If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+9t=20=4t-6
We move all terms to the left:
t^2+9t-(20)=0
a = 1; b = 9; c = -20;
Δ = b2-4ac
Δ = 92-4·1·(-20)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{161}}{2*1}=\frac{-9-\sqrt{161}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{161}}{2*1}=\frac{-9+\sqrt{161}}{2} $
| 12−5x=13x−7 | | 7(5m+3)-4(2-m)=403 | | t/4+2=12 | | 15t+10=7t-22 | | 12n=535+4.50n | | 0.5x+0.2x=28 | | 2(3x-4)(3x+4)=(4x-1)2 | | 4x2+52x=120 | | -42=6x-36 | | 8x+72=24 | | 8x=5x+80 | | 9x+90=-99 | | x-28=26-x | | 3x2^x=24 | | 14+3z=8z+14 | | 4/10x=0 | | (3x+1)+(2x+2)+2x=180 | | x+1.2x=550 | | 3/4x^2-x+2=0 | | 0=100+10t | | 2x^2-x-36^2=0 | | X^3-x=24 | | 11x-3=9×+25 | | 7x+6=-3x+31 | | 9x-14=12-4x | | 7/78=21/x | | 4x²-225=0 | | 8x+3=3x+58 | | 2/3b+b=15 | | (x-3)(6x+2)(2x-5)=0 | | 7z-21=27 | | x-3/X-12=9 |